Time-Frequency Analysis and Transitional Boundary Layer Investigation over a Pitching Airfoil
نویسندگان
چکیده
منابع مشابه
Simulation of Pitching and Heaving Airfoil with Oscillation of Flow Boundary Condition
A pressure based implicit procedure to solve the Euler and Navier-Stokes equation is developed to predict transonic viscous and inviscid flows around the pitching and heaving airfoils with a high reslution scheme. In this process, nonorthogonal and non moving mesh with collocated finite volume formulation are used. In order to simulate pitching or heaving airfoil, oscillation of flow boundary c...
متن کاملElectromagnetic Control of a Transitional Boundary Layer
We investigate numerically the transition to turbulence in a flat-plate boundary layer controlled by electromagnetic forces. The fluid considered is incompressible, Newtonian and low electrically conductive. Similar to boundary layer suction, when applying a steady, wall-parallel, and streamwise oriented Lorentz force, the Blasius velocity profile is transformed to an exponential one. Since the...
متن کاملNumerical investigation of the turbulent boundary layer over a bump
Large-eddy simulation (LES) has been used to calculate the flow of a statistically two-dimensional turbulent boundary layer over a bump. Subgrid-scale stresses in the filtered Navier–Stokes equations were closed using the dynamic eddy viscosity model. LES predictions for a range of grid resolutions were compared to the experimental measurements of Webster et al. (1996). Predictions of the mean ...
متن کاملNumerical Simulation of a Pitching Naca 0012 Airfoil
This paper describes the application of the noncommercial CFD-code FLOWer to the problem of a sinusoidally pitching NACA 0012 airfoil with high amplitude and reduced frequency under incompressible flow conditions. As FLOWer allows the approximate solution of the nonlinear conservation laws governing viscous fluid flow, i. e. the Navier-Stokes equations, a numerical investigation of the unsteady...
متن کاملNumerical Simulation of MHD Boundary Layer Stagnation Flow of Nanofluid over a Stretching Sheet with Slip and Convective Boundary Conditions
An investigation is carried out on MHD stagnation point flow of water-based nanofluids in which the heat and mass transfer includes the effects of slip and convective boundary conditions. Employing the similarity variables, the governing partial differential equations including continuity, momentum, energy, and concentration have been reduced to ordinary ones and solved by using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientia Iranica
سال: 2020
ISSN: 2345-3605
DOI: 10.24200/sci.2020.53393.3218